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Smectic ordering in liquid-crystal–aerosil dispersions. II. Scaling analysis
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Liquid crystals offer many unique opportunities to study various phase transitions with continuous symmetry
in the presence of quenched random disorder~QRD!. The QRD arises from the presence of porous solids in the
form of a random gel network. Experimental and theoretical work supports the view that for fixed~static!
inclusions, quasi-long-range smectic order is destroyed for arbitrarily small volume fractions of the solid.
However, the presence of porous solids indicates that finite-size effects could play some role in limiting
long-range order. In an earlier work, the nematic–smectic-A transition region of octylcyanobiphenyl~8CB! and
silica aerosils was investigated calorimetrically. A detailed x-ray study of this system is presented in the
preceding paper, which indicates that pseudocritical scaling behavior is observed. In the present paper, the role
of finite-size scaling and two-scale universality aspects of the 8CB1aerosil system are presented and the
dependence of the QRD strength on the aerosil density is discussed.
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I. INTRODUCTION

The study of the effect of quenched random disor
~QRD! on phase transitional behavior remains an attrac
area of research due to the broad implications outside
laboratory. The underlying physics has applications rang
from unique assemblies of complex fluids to doped semic
ductors. Many systems have been the focus of both theo
ical and experimental studies. The experimental efforts h
concentrated on idealized model systems in the hopes of
lating the essential features of quenched random disor
They include the still enigmatic superfluid transition of4He
in aerogels and porous glasses, the superfluid transition
phase separation of4He-3He mixtures in silica aerogels@1#,
and doped magnet systems@2#. Relatively recent efforts with
liquid-crystal ~LC!–silica composites@3–9# have demon-
strated that these are especially interesting model syst
They are of particular importance as a way to access ‘‘so
~elastically weak! phases of continuous symmetry, which a
directly coupled to surfaces and external fields.

The general consensus is that the physics of QRD in
uid crystals is essentially contained by a random-field
proach@10#. Recent theoretical efforts predict that an Isi
system with quenched random fields will move towards
new random-field Ising~RFI! fixed point with increasing dis-
order. However, a random-fieldXY (RFXY) system has no
new fixed point that is stable. Here, with increasing stren
of the disordering random field, an RFXY system still has

*Present address: NCNR, NIST, Gaithersburg, MD.
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flows toward theXY fixed point until long-range order is
destroyed@10#. Thus one expects, in general, that a 3D-XY
system subject to random-field perturbations has no
long-range order~LRO!. A detailed theoretical study of QRD
effects on smectic ordering in liquid crystals@11# concludes
that arbitrarily small amounts of QRD destroy even qua
LRO and hence no true smectic phase exists since the s
tic correlation length remains finite for all strengths of diso
der and all temperatures. This theoretical conclusion is
agreement with a recent x-ray study of octylcyanobiphe
~8CB!1aerosil dispersions@8#, the detailed results of which
are presented in the companion paper to this work, deno
hereafter as paper I@12#. This x-ray study reveals a finite
though large, smectic correlation length for all temperatu
and densities of silica. However, smectic thermal fluctuatio
still exist above a pseudonematic to smectic transition atT*
~close to but belowTNA

o for pure 8CB!. These smectic fluc-
tuations are expected to remain in theXY universality class
but also show crossover behavior from Gaussian tricriti
~TC! to 3D-XY with increasing strength of disorder@12#.

In all fluid systems studied to date as models of su
QRD effects, including the liquid-crystal system mention
above, the random perturbations are introduced via the
bedding of a random~gel-like! solid structure into the phas
ordering material. An open question remains as to the c
nection between the concentration of such solid inclusi
and the strength of the random disordering field. Also,
identification of QRD is complicated by finite-size effec
which could, in principle, play a dominant role in such sy
tems. In simple finite-size scaling~FSS!, where the confining
surfaces play no interactive role, thebulk critical correlation
fluctuations are cut off at a length dictated by the distan
©2003 The American Physical Society09-1
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between surfaces, which corresponds to a minimum redu
temperature where the transition is ‘‘truncated.’’ Howev
when the surfaces are arranged in a random manner
high void connectivity in order to introduce QRD, the di
tance between surfaces no longer acts as an upper le
scale in the system, and changes in the transition’s crit
behavior may also occur. Given the absence of LRO in s
perturbed systems, the required characterization of the c
cal behavior may not be possible. In spite of this, if a critic
power-law analysis of the transition heat capacity data
available, then, through two-scale universality, the criti
behavior of the correlation length forT.T* may be esti-
mated and compared with direct measurements. Finally
the introduced random surfaces have in addition the freed
of an elastic response, then coupling between the gel
host elasticities can occur. This latter effect has only begu
be explored theoretically@13–15#.

The particular system that is the focus of this paper i
silica colloidal gel of aerosil particles dispersed in a liqu
crystal denoted as LC1aerosil. The analysis will also be ap
plied to another, earlier, system of an aerogel~fused silica
gel! structure embedded within a liquid crystal denoted
LC1aerogel. The two are nearly identical in every respec
fractal-like nature of the gel structure, surface chemistry,
density—save for their relative elasticity. Additionally, th
ease of achieving nearly arbitrary silica densities for
aerosil system allows for greater control of the disorder.
the 8CB1aerosil system, thermal evidence for two regim
of behavior has been found@4#: low-density gels where
pseudocritical behavior is closely related to that for the p
LC and higher-density gels where all transition features
pear to be smeared. More rigid aerogels in LC1aerogel sys-
tems are crudely like the LC1aerosil gels in the high-densit
regime but differ in some important ways since the elas
strain imposed by the random anchoring surfaces of aero
is fully quenched. It appears that the disorder introduced
an aerogel is so great that all ‘‘transition’’ features are d

FIG. 1. Circles and ‘‘hairs’’ ~upper left! represent type-
300, 70-Å-diam, aerosil particles and 8CB molecules, respectiv
drawn to approximate scale. This cartoon corresponds to an ave
void length l o'400 Å andrS'0.20, where the density units ar
grams of silica per cm3 of 8CB. The solid volume fraction isF
'0.08. Open and shaded parts of the arrow depict void and s
chords, respectively.
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matically smeared and the physics of such systems ma
more closely related to static random-elastic strain disord

In spite of the loss of smectic LRO, paper I@12# and an
earlier calorimetric study of 8CB1aerosils @4# show that
smectic thermal fluctuations still play an important role
LC1aerosil systems. Many concepts from pure mater
such as finite-size scaling, two-scale universality, a
tricritical-to-XY crossover due to variable de Gennes co
pling need to be considered in addition to intrinsic ne
quenched random effects that dominate at temperatures
low an effective transition temperature. The present pape
organized as follows. The relevant characteristics of an a
sil gel are described in Sec. II. Section III reviews the ess
tial features of LC1aerosil behavior near theN-SmA transi-
tion. The application of scaling analysis to calorimetric a
x-ray results on the 8CB1aerosil system is presented in Se
IV with comparisons made to the 8CB1aerogel system. Sec
tion V summarizes the conclusions that can be drawn fr
such scaling analysis and discusses the issue of the rela
ship between the RF strength and the aerosil density. App
dix A reviews the relevantN-SmA critical behavior in pure
liquid crystals, and Appendix B presents the necessary ba
ground for two-scale universality and finite-size scaling.

II. GENERAL DESCRIPTION OF AEROSIL GELS

For liquid-crystal systems, the introduction of quench
random disorder typically requires the inclusion of rando
solid surfaces. This can be accomplished by the percola
of a low-volume-fraction gel structure randomly arrang
throughout the LC host. Such gels can be physically reali
by a diffusion-limited-aggregation process, which form
fractal-like structures having a wide distribution of vo
length scales. In practical terms, the fractal-like characte
limited to length scales much larger than the size of the ba
unit and smaller than some macroscopic size limiting the g
i.e., the sample size.

Because of the hydroxyl groups on the surface of
70-Å-diam hydrophilic aerosil (SiO2) spheres used in this
work, hydrogen bonding is possible between aerosil partic
@16#. When dispersed in an organic liquid medium, aero
particles comprising three to four lightly fused spheres a
having a mean radius of gyration of'240 Å @4# will attach
to each other and form a gel by a diffusion-limited aggreg
tion process. This gel can be thought of as a randomly cro
ing ‘‘pearl necklace’’ of silica and a cartoon depiction
given in Fig. 1. The hydrogen-bonded nature of the sil
‘‘links’’ is relatively weak and gives these gels the ability t
break easily and reform on moderate time scales~such gels
are termed thixotropic!. In addition, because of the diffusion
limited aggregation process by which gelation occurs,
structure of the final gel may become anisotropic if the g
lation occurs in an anisotropic fluid, i.e., gelation in a we
aligned nematic or smectic liquid crystal. This gives su
colloidal gels very attractive uses in future research a
route to studying anisotropic random disorder@17#.

These aerosil gels are very similar in structure to the w
known and previously studied aerogels, which are anot
type of fractal silica gel. Aerogels are formed by a reactio
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SMECTIC ORDERING IN LIQUID-. . . . II. . . . PHYSICAL REVIEW E 67, 011709 ~2003!
limited aggregation process and form a gel nearly identica
that of aerosils except that the basic silica units in aerog
are chemically fused together. Thus, aerogels have a l
shear modulus~they break before yielding! while in contrast
aerosil gels have a quite small, density-dependent, s
modulus@18#. Thus, aerosil gels can respond elastically
strains, which may turn out to be a crucial difference as w
be discussed later. For the present work, the thixotropic c
acter ensures that the silica strands mainly dictate, at
silica concentrations, the local nematic director without i
posing high-energy elastic strains over the material throu
out the void. As the silica density increases, the aerosil
eventually becomes stiff enough to elastically strain the h
fluid.

For any random gel structure, a mean distance betw
solid ~gel! surfaces or a mean void size,l o , can be uniquely
defined despite the wide distribution of void sizes. The d
nition of l o in terms of macroscopic, and experimentally a
cessible, quantities begins by imagining a ‘‘straw’’ of un
form cross sectionA sent through the gel; see Fig. 1. Th
places where the gel randomly intersects the ‘‘straw’’ defin
a solid length while the distance between intersections
fines a void length. The relevant macroscopic quantities
the specific surface areaa in total surface area per mas
~given as 300 m2 g21 @16# for the type R300 aerosil used i
the 8CB1aerosil samples! and the reduced density,rS5
mass of solid per open volume or in our case grams of si
per cm3 of LC. Since the cross section of this imagina
straw is uniform, the proper summing of the total void a
solid volumes of the straw depends only on the void a
solid lengths, respectively, noting that each void must
bounded by two walls. The sum of the total solid length a
the total void length is simply the length of the straw whi
spans the sample.

The two requirements for volume and length defin
above allow the definition of the average void length as

l o52/arS . ~1!

See Refs.@4# and@19# for a more detailed derivation. Strictl
speaking, this definition ofl o is valid only in the dilute re-
gime where the addition of more solid does not significan
change the specific surface area. However, as the conce
tion of solid increases, more surface area is lost due to m
tiple connections~‘‘clumping’’ of basic units!; thus the spe-
cific surface area should be a decreasing function of the s
volume fractionF. A limiting case of interest is when com
pletely enclosed pores occur. Here, the open volume is
bounded on all sides and a rederivation of the mean v
~now pore! size along the lines described above yieldsl o
56/arS . This can be recast into the form given in Eq.~1! if
apore→avoid/3. Thus, Eq.~1! is quite general for a random ge
structure if the variation ofa with rS is known. The exact
variation of a with solid concentration depends on the sp
cific process of densification of the gel. Since the gel str
tures for both aerosil gels and aerogels are nearly ident
results for void sizes determined from small-angle x-ray sc
tering ~SAXS! of various density aerogels@20# can be used
to estimate the variation ofa(rS), in m2 per gram, asa
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53002103.8rS , whererS has the units grams of SiO2 per
cm3 of LC. The condition for closed pores is crudely pr
dicted to occur atrS'1.97 g cm23 ~assuming a continuou
process of diffusion-limited aggregation!. For all LC1aerosil
and LC1aerogel samples studied to date, the density
silica employed has been well below that limit and the use
this estimate ofa(rS) in Eq. ~1! reproduces quite closely th
SAXS measured void sizes of aerogels. This provides so
confidence that a useful representation of a character
length scalel o for fractal-like gels is available.

From the above discussion, the reduced densityrS is an
attractive quantity to describe the gel and its disorder
character@21#. Note that the volume fraction of LC in a silic
boundary layer of thicknessl b is given byp5 l barS @4#. This
quantity p is the fraction of LC filling the voids that is in
direct contact with the solid surfaces and thus conside
strongly ‘‘pinned.’’ Sincep is a natural measure of the ‘‘dis
ordering strength’’ of the gel,rS is expected to be linearly
related to this QRD strength for low to moderaterS values
@22#.

III. NEMATIC –SMECTIC- A BEHAVIOR FOR
LIQUID-CRYSTAL –SILICA DISPERSIONS

The essential feature of importance here is the observa
that low silica density LC1aerosil samples exhibit pseud
ocritical behavior that is parallel to the critical behavior e
hibited by pure LCs in spite of the absence of smectic lo
range order in LC1aerosils. In paper I, the usual scalin
concepts are shown to hold for the relationship between
normalized thermal fluctuation amplitudes1

N and the parallel
correlation lengthj i for T.T* , whereT* is an effective
N-SmA transition temperature. These concepts also hold
the temperature dependence of the normalized integr
area of the static~QRD! fluctuation term in the x-ray struc
ture factor forT,T* , where this area is proportional toa2

N ,
and we drop hereafter the superscriptN denoting normaliza-
tion. In the latter case, it is shown in paper I thata2;(T*
2T)x, where the ‘‘critical’’ exponentx is essentially the
same as 2b for the smectic order parameter squared in p
liquid crystals. Calorimetric data for 8CB1aerosils@4# sup-
port this view that effective critical behavior occurs for lo
silica density LC1aerosil samples.

The background given in Appendix A for trends
N-SmA critical behavior for pure liquid crystals as a functio
of the McMillan ratio RM5TNA /TNI is pertinent to LC
1aerosil systems. It appears that increasing the densityrS of
the thixotropic gel of aerosils decreases the smectic-nem
coupling described in Appendix A. Indeed, there is a sim
empirical connection between the variableRM for pure LCs
and the variablerS for LC1aerosils. As described in Sec. IV
of paper I, an effective McMillan ratioRM

eff~sil! for LC
1aerosil systems can be defined as

RM
eff~sil!50.97720.47rS . ~2!

Figure 11 in paper I demonstrates this equivalence ofRM and
9-3
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rS as measures of changes in the smectic-nematic coup
in pure LCs and LC1aerosils. This connection will be dis
cussed further in Sec. IV B.

The full power-law form in terms of the reduced tempe
ture t5uT2T* u/T* used to analyze experimental specifi
heat data associated with theN-SmA phase transition is@23#

DCp~NA!5Cp~observed!2Cp~background!

5A6t2a~11D6tD1!1Bc , ~3!

where the critical behavior as a function of reduced tempe
ture t is characterized by an exponenta, an amplitudeA6

above and below the transition, a critical background te
Bc , and corrections-to-scaling terms characterized by the
efficients D6 and exponentD1.0.5. The excessN-SmA
specific-heat~heat capacity per gram of LC! data for 8CB
1aerosil samples@4# is reproduced in Fig. 2 in log-log form
in order to illustrate the quantities described above. Figur
highlights the quality of the fits to the standard power-la
form for 8CB1aerosil samples with lowrS . Note the im-
portance of the inclusion of the corrections-to-scaling te

FIG. 2. Specific heat due to theN-SmA phase transition,
DCp(NA), as a function of reduced temperaturet, for three 8CB
1aerosil samples with aerosil densitiesrS50.022, 0.052, and
0.092. Data taken from Ref.@4#. Open circles and dashed line
represent data and fit fort.0 ~above transition! while filled circles
and solid lines represent data and fit fort,0 ~below transition!. Fits
were made using Eq.~3!. Also indicated for each sample arehM

[DCp
max(NA) and the minimum reduced temperaturestm

6 for
which the data can be fit with a power law.
01170
ng

-

a-

o-

2

,

seen as curvature at hight. In fact, the quality of the fit for
the lowest-density 8CB1aerosil sample rivals that observe
for most pure LCs. In addition, the changing shape of
N-SmA heat capacity peak withrS is clearly evident. As
discussed in Ref.@4#, it is clear from Fig. 2 that a fit to the
data with Eq.~3! can include only data forutu.utm

6u since the
DCp peak is truncated at a finite maximum valuehM

[DCp
max(NA).

The role of pseudocritical behavior for the 8CB1aerosil
system is fully described in paper I and Ref.@4#. In the
present paper, the applicability of two-scale universality a
finite-size scaling in describing the pseudocritical behavio
LC1aerosils is investigated. Essential scaling backgrou
material is introduced in Appendix B, and these concepts
implemented in Sec. IV for the analysis of theN-SmA ‘‘tran-
sition region’’ for 8CB1aerosils.

IV. ANALYSIS OF THE NEMATIC – SMECTIC- A
TRANSITION IN THE 8CB ¿SIL SYSTEM

A. Specific-heat behavior

In order to utilize the scaling analysis described in Appe
dix B, the maximum length scalejM and the appropriate
critical fluctuation parameters must be substituted into E
~B3! and ~B4!, which are repeated here for convenience,

dT* /T* '2tm
152~jM /j io!21/n i, ~4!

hM5A6~jM /j io!a/n i@11D6~jM /j io!2D1 /n i#1Bc , ~5!

to describe the fractional temperature rounding of the tra
tion and the specific-heat maximum, respectively. In this
per, two approximations will be explored. In the first cas
we use the mean void size as the cutoff length scalejM
5 l o and thebulk critical parameters. This approach repr
sents conventional finite-size scaling, denoted as FSS, w
the cutoff length scale is set by a natural length of the ‘‘co
finement.’’ In the second case, we use the calorimetrica
determined 8CB1aerosil critical parameters and two-sca
predictions for the bare correlation length and exponent
set the cutoff length scale to the saturated parallel sme
correlation length found by the x-ray analysis in paper I, i.
jM5j i

LT . This analysis recognizes that the random-field
fects truncate the growth of order and tests whether tw
scale universality is obeyed on approaching this truncat
We label this approach random-field scaling, or RFS
short.

The specific-heat maximumhM[DCp
max(NA) is plotted

versus rS in Fig. 3 for 8CB1aerosil and 8CB1aerogel
samples. Given as a dashed line on this log-log plot is
simple scaling prediction using only the leading singular
of the pure 8CB heat capacity and the mean-void size as
truncation length. This ignores the critical background a
corrections-to-scaling terms in Eq.~5! and yields a straight
line having a slope ofa/n i50.45. This is the usual theore
ical FSS prediction forhM , and its failure highlights the
importance of using the full expression given by Eq.~5!.
Surprisingly, the full analysis denoted as FSS, which uses
pure 8CB critical parameters andjM5 l o from Eq. ~1!, ap-
9-4
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pears to work very well over the entire range ofrS . This is
surprising since the critical behavior of the 8CB1aerosil
samples is changing withrS as seen in Fig. 2 and the sat
rated parallel smectic correlation lengthj i

LT is much larger
than l o for all rS @12#. Thus, we are suspicious that th
agreement may be accidental.

The analysis denoted as RFS uses the evolving spec
heat critical behavior and two-scale universality predictio
~see Appendix B! for the equivalent correlation length crit
cal behavior at eachrS . The low-temperature experimental
measured saturated parallel correlation lengthj i

LT is used as
the truncation lengthjM . This analysis reproduces ver
closely the observed heat capacity maximum and is c
pletely consistent with both the effective critical behav
and the maximum smectic correlation length. Unfortunate
this analysis is only applicable up torS'0.1 since a critical
analysis ofDCp(NA) is not possible for largerrS @4#. Note
that hM for 8CB1aerogel samples cannot be described
either scaling methods. For either scaling approximation
reproduce the aerogel results, a far smallerjM is required,
which indicates that the aerogel has a much stronger di
dering influence than the aerosil at any givenrS value.

The fractional rounding of the transitiondT* /T* for 8CB
1aerosil and 8CB1aerogel samples is given versusrS in
Fig. 4. For samples where critical specific-heat fits were
possible, i.e., 8CB1aerosil forrS.0.1 and all 8CB1aerogel
samples, the fractional rounding is estimated ad hoc

FIG. 3. Truncation plot ofhM[DCp
max(NA) vs rS for 8CB

1aerosils@4# and 8CB1aerogels@20#. Both the dashed and soli
lines are FSS predictions based on using bulk 8CB critical par
etersj io andn i to find the reduced temperature wherejM5 l o . The
dashed line represents the simple FSS result based on using on
leading singularity in Eq.~5!; see text. The solid line denotes FS
using the full heat capacity function. The3 ’s are based on a RFS
analysis using two-scale predicted critical parameters~see text! and
jM5j i

LT found in paper I.
01170
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'10% larger than the width between inflection points
DCp . As was seen in Fig. 3, the FSS analysis works well
all densities of 8CB1aerosil samples. As before, this is su
prising given the known changes in critical behavior and
fact that j i

LT. l o . The RFS analysis predicts a somewh
sharper transition than is observed. The observed roundin
not likely influenced by the amplitude of temperature osc
lations employed by the ac-calorimetric technique in Re
@4# and @20#, which is on the order of 5 mK and would
account for a fractional rounding of only;1025. The esti-
mation tm

25tm
1 explicit in Eq. ~4! may be in question as i

assumes that the unknown critical behavior of the correla
length belowT* is the same as that aboveT* . A conse-
quence of these arguments is that the agreement of FS
likely accidental although intriguing. Again, the 8C
1aerogel fractional rounding is much larger than that for
8CB1aerosil samples, which is an indication that a sma
jM is required and supports the view of a stronger disord
ing influence for the aerogel than the aerosil.

Figure 5 presents theN-SmA transition enthalpydHNA
versusrS for 8CB1aerosil and 8CB1aerogel samples. Un
like hM and dT* /T* , which are measures of truncation e
fects on DCp very close toT* , dHNA5*DCp(NA)dT is
sensitive to both truncation and changes in the shape ofDCp
over its entire temperature range. This is clearly seen in
2 and is discussed in detail in Ref.@4#. A finite-size scaling
analysis fordHNA proceeds by integrating the availableDCp
critical form approximately63 K aboutT* (utu'1022) to
the point corresponding totm

6 . As an approximation, a linea
evolution of DCp betweentm

1 and tm
2 is assumed. The FSS

-

the

FIG. 4. Dependence onrS of the fractional round-off region
~gap aboutT* ) whereCp power laws fail. The solid line depicts
FSS predictions using bulk critical parameters and the fluctua
cutoff length,jM5 l o , while the3 ’s depict RFS predictions using
two-scale critical parameters andjM5j i

LT from paper I.
9-5
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analysis, given by the solid line in Fig. 5, does not agree w
with the data for either system. The failure of this model
not surprising since it ignores any changes in theDCp criti-
cal parameters such asA6 and a with rS . A RFS analysis
would not be very meaningful fordHNA since forrS,0.1,
the input parameters for this model automatically ensure
fect agreement. Also, the necessary input critical parame
cannot be obtained for 8CB1aerosil samples withrS.0.1 or
for any of the 8CB1aerogel samples.

B. Smectic-A x-ray scattering for TÌT*

Two-scale universality is reviewed in Appendix B, whe
it is assumed that the 3D-XY result

aA1~j ioj'o
2 !.0.647 ~6!

should hold for 8CB1aerosil samples. To proceed furthe
two additional assumptions are adopted that are inheren
the x-ray analysis presented in paper I: (n i2n') and
(j io /j'o) for 8CB1aerosil samples have the pure 8CB v
ues of 0.16 and 2.22, respectively, for allrS . For those 8CB
1aerosil samples where criticalDCp(NA) fits are available,
the above three assumptions allow the prediction
j io , j'o , n i , andn' . These parameters will vary withrS
since thea andA1 values from the critical heat capacity fi
vary with rS . The resultingj i(rS ,T) ‘‘critical’’ behavior for
T.T* permits the RFS calculations ofhM anddT* /T* pre-
sented Sec. IVA.

Given two-scale universality and the assumptions outlin
above, both the bare smectic correlation length and the
fective critical exponent may be estimated from the criti

FIG. 5. TherS dependence of theN-SmA transition enthalpy
dHNA5*DCp(NA)dT. As before, filled and open circles are da
taken from@20# and @4#, respectively. The solid line depicts FS
using bulk 8CB critical parameters andjM5 l o.
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analysis of the heat capacity data. Thus, the self-consis
critical behavior predicted here can be directly compared
those measured in paper I.

Presented in Fig. 6 are the experimentally measuredj i
values as a function of reduced temperature for the 8
1aerosil data taken from paper I@12#. The two lines given in
Fig. 6 show the observed critical behavior in pure 8CB@24#,
whereTc is used forT* , and the two-scale prediction forj i
for the 8CB1aerosil sample where the predicted correlati
lengths differ most from those of 8CB (rS50.092). Note
that althoughn i and j io both vary with rS , the predicted
overall trends ofj i(t)5j iot2n i values differ only slightly
from pure 8CB. The experimentalj i(t) data for variousrS
agree well with each other within the scatter but all 8C
1aerosil values are consistentlylarger than the scaling pre-
diction. The significance of this observation is not known

As an analog to Fig. 11 of paper I, the experimenta
measured heat capacity exponentsa for the N-SmA transi-
tion in pure LCs and the effective exponentsaeff for the
N-SmA pseudotransition for 8CB1aerosil samples can b
plotted versusRM andrS , respectively, and this is shown i
Fig. 7. In addition, the variation of the mean correlatio
length exponentn̄[(n i12n')/3 for pure LCs~versusRM)
and those predicted by our two-scale analysis~versusrS) are
also plotted. Going from left to right in Fig. 7 corresponds
decreasingnematic-smectic coupling along the lines given
Ref. @23# for pure LCs. The two-scale predicted critical ev
lution of the average correlation length exponent with
spect torS is in good agreement with the correspondi
evolution in pure LCs with respect toRM . This match is

FIG. 6. Parallel smectic correlation lengthsj i measured in pape
I as a function of reduced temperaturet for 8CB1aerosil samples
with densitiesrS given in g cm23 shown in the inset. The dashe
line represents pure 8CB behavior@24# while the solid line repre-
sents the most extreme two-scale predicted behavior for an
1aerosil sample~see text!.
9-6
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SMECTIC ORDERING IN LIQUID-. . . . II. . . . PHYSICAL REVIEW E 67, 011709 ~2003!
completely consistent with the correlation betweenrS and
RM seen from the experimentally measured exponentsa and
x'2b in paper I and given previously in Eq.~2!. Figure 7
demonstrates that the two-scale predicted behavior give
this analysis for the correlation lengths is consistent w
other observed trends in the evolution of pseudocritical
havior with rS .

V. DISCUSSION AND CONCLUSIONS

Despite the loss of long-range smectic order, quasicrit
thermal fluctuations remain important at high temperatu
for low silica density 8CB1aerosil samples. In addition
two-scale universality analysis provides a link between
SmA quasicritical behavior of the heat capacity and the c
relation lengths. The smectic fluctuations are modified fr
the pure 8CB behavior due to the effects of quenched
dom disorder. A collection of effective critical exponents f
the 8CB1aerosil system and selected pure LCs as a func
of rS andRM , respectively, is presented in Table I. As show
in paper I and here, the densityrS of an aerosil gel is directly
correlated to the McMillan ratioRM of pure LCs, both of

FIG. 7. Effective heat capacity critical exponenta obtained

from Ref.@4# ~top panel! and scaling prediction ofn̄ ~bottom panel!
for 8CB1aerosil samples as a function of the densityrS ~open
circles!. In both panels, tricritical~TC! andXY values are denoted
by the horizontal dashed lines. Pure liquid-crystal values, obta
from Ref. @23#, are plotted vs the McMillan ratio,RM[TNA /TNI

~filled circles!.
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which are indicators of the strength of smectic-nematic c
pling. The flow of the effective critical behavior for th
N-SmA transition shown in Table I and Fig. 7~see also Fig.
11 of paper I! as a function of this QRD induced decouplin
is consistent with theoretical predictions that no new fix
point is present for the RFXY model @10#. For the liquid-
crystal–silica dispersion system studied here, the flow
from near a Gaussian tricritical point toward the 3D-XY
fixed point.

This crossover behavior is explained for pure LCs by
decrease in nematic–smectic coupling asRM decreases. Fo
8CB1aerosils, an increase inrS appears to have the sam
effect. Recent work has found that aerosil gels exhibit d
namics which can couple to a host liquid crystal@25# pre-
sumably through direct coupling to director fluctuation
Also, recent deuterium NMR studies of 8CB1aerosils@6#
found no appreciable change in the magnitude of orien
tional order aboveT* for rS,0.1. The reason appears to b
that the aerosil particles form a hydrogen-bonded thixotro
3D gel network that provides~a! random anchoring surface
for 8CB molecules and~b! because of the flexible/fragile
nature of the silica gel, random elastic dampening of ela
~director! fluctuations occurs in the liquid crystal. Both e
fects will reduce the nematic orientational susceptibility
suppressingdirector fluctuations. Thus, increasingrS in LC
1aerosil samples is equivalent to decreasingRM in a pure
liquid crystal, which in the case of 8CB drives its critic
behavior towardsXY. This may have important conse
quences for thebulk N-SmA behavior as theoretical effort
have mostly concentrated on the de Gennes type of sme
coupling to the magnitude of nematic order, and it appe
that the coupling to director fluctuations may play an imp
tant role in this crossover behavior.

Because the random disorder is introduced by the inc
sion of network gel structures within the liquid crysta
finite-size effects can exist and may play a role in truncat
thermally driven fluctuations. Such effects would explain t
increasing suppression of the heat capacity peak with
creasingrS , which corresponds to decreasing the mean d
tance between solid surfaces. Scaling analysis provide
good description of the maximum heat capacity and the fr
tional rounding~or truncation! of the transition for all 8CB
1aerosil samples. However, FSS analysis does not provi
good prediction of the trend withrS for the transition en-
thalpydHNA5*DCp(NA)dT. The reason for this is the fac
that the trend indHNA is dominated not by the truncation o
the DCp(NA) peak but by the changes in shape and size
DCp(NA) over its entire range, and the latter effect is due
crossover rather than finite size.

Below the pseudotransition temperatureT* , the correla-
tion lengths and the amplitudes of the thermal term in
smectic structure factor for 8CB1aerosils saturate and ar
approximately temperature-independent@12#. Quenched ran-
dom disorder imposed by the aerosil gel network domina
the smectic fluctuations below the pseudotransition. Plo
in Fig. 8 are the low-temperature parallel correlation leng
j i

LT taken from paper I plus the corresponding perpendicu

j'
LT values and the mean correlation lengthsj̄5(j ij'

2 )1/3.

d
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TABLE I. Summary of effective critical exponents for 8CB1aerosils and selected pure LCs taken fro
Ref. @23#. The McMillan ratio for pure LCs isRM5TNA /TNI . Note thatrS is given in units of grams of silica
per cm3 of liquid crystal, l o is in Å, andT* is in degrees Kelvin. The last two columns refer to the fitti
parameters fora25B(T* 2T)x given in paper I. Going down the table fromXY to tricritical corresponds to

increasing the smectic–nematic coupling. Then̄[(n i12n')/3 entries in square brackets represent the s
ing predictions for the 8CB1aerosil samples. For the columns giving 22h andx values for 8CB1aerosil
samples, the values forg/n i and 2b522a2g are given in parentheses for pure liquid crystals.

Sample RM rS l o T* a n̄ 22h or (g/n i) x or (2b) 1003B

3D-XY @34# 20.013 0.671 1.962 (0.696)
DB51C5stilbene 0.780 20.01 0.62 (1.78) (0.71)
7APCBB 0.863 20.01 0.66 (1.91) (0.67)
8CB1sil @12# 0.341 222 304.92 1.83 0.695 6.95
8CB1sil @12# 0.282 262 305.41 2.04 0.65 1.46
4O.7 0.926 20.03 0.69 (1.87) (0.57)
8CB1sil @12# 0.220 328 305.90 1.77 0.60 3.59
8CB1sil @12# 0.161 439 305.54 2.01 0.625 1.13
8CB1sil @12# 0.105 660 306.24 2.08 0.54 2.32
8CB1sil @4# 0.092 748 306.32 20.02 @0.67#
8.5S5 0.954 0.10 0.70 (1.90) (0.42)
8CB1sil @12# 0.078 882 306.00 1.99 0.465 4.05
8CB1sil @4# 0.052 1306 306.13 0.08 @0.64#

9̄S5 0.967 0.22 0.62 (1.85) (0.47)

8CB1sil @12# 0.051 1327 306.24 2.01 0.46 2.36
8CB1sil @12# 0.041 1660 306.28 1.96 0.51 1.08
8CB1sil @12# 0.025 2660 306.15 1.94 0.52 1.18
8CB1sil @4# 0.022 3054 306.23 0.23 @0.59#
8CB 0.977 0 306.97 0.31 0.56 (1.88) (0.43)

1̄0S5 0.983 0.45 0.54 (1.80) (0.45)

tricritical 0.50 0.50 2 (0.50)
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Also plotted are the ‘‘isotropic’’ smectic correlation length
reported at low temperature for 8CB1aerogel samples@9#,
the mean-void sizel o based on Eq.~1!, and an estimate o
the saturatednematic directorcorrelation lengthjN mea-
sured in 6CB1aerosil samples@5#. As discussed in paper I
the parallel correlation length is much larger thanl o but
smaller thanjN for all 8CB1aerosil samples studied. Th
first fact indicates than the smectic domains span m
‘‘voids’’ and it is thus reasonable to expect that their infl
ence is of a random-field type, while the latter fact is phy
cally reasonable since the observed smectic domains ca
be larger than the size of a nematic domain. However, 6
does not exhibit a smectic phase, so it remains unknown
the director correlation length would change, if at all, due
the onset of smectic order. Interestingly, the low-tempera
8CB1aerogel correlation lengths appear to agree fairly w
with l o , while the aerogelDCp(NA) peak is severely
rounded, indicating that 8CB is very strongly perturbed
the rigid fused silica gel.

In spite of the applicability of the pseudocritical scalin
ideas discussed here and in paper I, quenched random d
der plays a dominate role in the behavior of 8CB1aerosils
for temperatures belowT* . In particular, consider the x-ra
structure factor belowT* , which is dominated by the
‘‘Lorentzian-squared’’ type term expected for random-fie
disordered systems@12#. Random-field theories postulate
01170
y

-
not
B
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y

or-

random-field at eachi th ‘‘spin’’ site of strengthhW i whose
average iŝ hW i&50 but whose square defines the variance
the disorderD[^hW i•hW i&5uh2u @26#. The x-ray analysis pre-
sented in paper I uses a structure factor analogous to
used for the analysis of random-field magnets given in R
@26#; see Eq. ~1! in paper I. Thus, the saturated~low-
temperature, denoted by the superscript LT! values of the
mean smectic correlation lengthj̄LT5(j ij'

2 )1/3, and the am-
plitude of the thermal contributions1

LT , as well as the am-
plitude of the QRD contributiona2 to the structure factor can
be compared to the predicted scaling for random-field dis
der. Note thata2 is temperature-dependent over the ent
temperature range, thus we use a value fora2(DT) at DT
5T2T* 526 K in what follows. The relevant scaling rela
tions predicted for random-field systems at low temperatu
are

j̄;D2nD,

s1;j̄3,
~7!

a2;j̄05const,

a2 /s1;j̄23,
9-8
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SMECTIC ORDERING IN LIQUID-. . . . II. . . . PHYSICAL REVIEW E 67, 011709 ~2003!
where nD51/(dc2d), dc is the lower critical dimension
andd53 is the physical dimension of the random-field sy
tem @26#. We have dropped the superscript LT for conv
nience here and in what follows. For a pure, continuous s
metry, XY system that exhibits true long-range ord
dc(XY)52, which shifts upward for a random-fieldXY sys-
tem todc(RFXY)54 @27#. Although theN-SmA phase tran-
sition is not a simple member of the 3D-XY universality
class, Eqs.~7! are expected to be reasonably applicable
smectics. ThusnD51 for the divergence of the smectic co
relation length with the strength of the random field. Sub
tuting this value ofnD and eliminatingj̄ from the expres-
sions for the scattering amplitudes in Eqs.~7!, we find the
predicted scaling relations solely in terms of the rando
field variance for an RFXY system as

j̄;D21.uhu22,

s1;D23.uhu26,
~8!

a2;D05const,

a2 /s1;D3.uhu6.

The scaling of these quantities with respect torS can be
compared to the predicted scaling behavior with respect tD
in order to make a connection betweenD and ultimatelyuhu

FIG. 8. Saturated 8CB1sil parallel j i ~filled circles!, perpen-

dicular j' ~open circles!, and meanj̄5(j ij'
2 )1/3 ~open triangles!

smectic correlation lengthsjLT for T!T* vs rS ; data taken from
paper I. The low-temperature isotropic smectic correlation lengthj
reported in Ref.@9# for 8CB1aerogel samples are shown by the3
symbols. The solid line is the estimated maximumnematicdirector
correlation lengthjN for 6CB1aerosil @5#, and the dashed line is
the mean void sizel o estimate given by Eq.~1!.
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with rS . In paper I, the simple assumption thatD;rS is
made, while the assumptionrS;uhu.D1/2 has been made
elsewhere@9#.

As discussed in paper I in terms ofj i , a one-regimerS
analysis~a single trend over the entire range ofrS values
studied! yields for the 8CB1aerosil systemj̄;rS

21.060.2.

Similarly, the scattering amplitude ratio as a function ofj̄

yields a2 /s1;j̄22.6860.26 at DT526 K. The scatter in the
experimental values ofa2(DT) as a function ofrS only al-
lows a very rough estimate of its scaling, but it appears to
very weakly dependent on either correlation length or sil
density. Unfortunately, the uncertainties ins1

LT values arising
from fitting the x-ray profiles at low temperatures~where the
quenched random term greatly overshadows the ther
fluctuation term! and the added uncertainties from norma
ization make it unsuitable for testing as a function ofrS .
However, the ratioa2(DT)/s1

LT is better characterized sinc
it is independent of the normalization procedure.

One possible explanation for the observed systematic
viations from the simple power-law forms given above
that there is a finite maximum aerosil density above wh
no smectic correlations can exist. This maximumrS corre-
sponds to a minimum mean void size,l c , below which the
liquid crystal has insufficient space to form smectic laye
Since at low densities the void sizel o is inversely related to
rS as shown in Sec. II, we propose an empirical relations

j̄5A~ l o2 l c! ~9!

for a linear scaling of the mean correlation length with t
corrected void sizel o2 l c . The variation of bothj̄ and
a2(T* 26K)/s1 with ( l o2 l c) is given in Fig. 9, whereA
.0.93 andl c.80 Å were found by a best linear fit ofj̄ with
Eq. ~9! @28#. The solid line in the top panel shows the res
of this fit. In addition, the solid line in the lower panel of Fig
9 shows the expected behavior ofa2(DT)/s1

LT given the em-
pirical relationship of Eq.~9! with l c580 Å and the scaling
predicted in Eq.~8!. A fit with a2(DT)/s1

LT;( l o2 l c)
y, al-

lowing y to be a free parameter and fixingl c580 Å, yielded
the dashed line in the lower panel and the exponent va
y522.6. Since this smalll c value is approximately twice
the smectic partial bilayer thickness in 8CB, it is reasona
that no smectic ordering can occur whenl o& l c . The overall
behavior shown in Fig. 9 as compared to the random-fi
scalings for anXY system suggests that the random-fie
strengthD5uhu2;rS , at least for smallrS ~and thus large
l o). This use of the empirical relationship in Eq.~9! allows
us to bring the observed results into better agreement w
predictions for scaling in random-field systems.

There is a second possible explanation for the clear de
tions from a simple power-law dependence onrS shown in
paper I and here in Fig. 8. This second possibility is t
existence of a more complex relationship betweenD andrS .
The correlation lengths appear to have a weakerrS depen-
dence than the mean void size belowrS50.1, while above
this density the opposite occurs@29#. In addition, the value of
the ratio a2(DT526 K)/s1

LT exhibits distinctly different
9-9



fo
on

d
o

he
om

tic
ese
uld
the
s a

ld
t
y
der
he

c-

nd
con-
y

f
e

gt

or

n

gth

es,

IANNACCHIONE et al. PHYSICAL REVIEW E 67, 011709 ~2003!
power-law dependences onrS above and below this silica
density; see Fig. 10 here and also Fig. 12 in paper I
further details. Using separate power-law characterizati
for low density (rS<0.1) and high density (rS>0.1), we
find

j̄;rS
20.560.1~ low rS!, ;rS

21.460.1~high rS!,
~10!

a2 /s1;rS
1.260.1~ low rS!, ;rS

3.760.3~high rS!.

Thesetwo-regime fits are shown forj̄ anda2/s1 in Fig. 10.
Recall that the concept of a low-density regime (rS,0.1)
and a high-density regime (rS.0.1), shown in Eq.~10!, is
supported by the specific-heat data@4#, where power-law fits
were possible whenrS,0.1 but not whenrS.0.1.

In order to establish a connection between the disor
varianceD ~a measure of the overall disordering strength
the individual random fieldshi , D5uhu2) and the silica den-
sity rS for low and highrS regimes, we compare Eqs.~8!

and~10! for j̄ and the ratioa2(DT)/s1
LT , which are the two

FIG. 9. The low-temperature mean smectic correlation len

j̄5(j ij'
2 )1/3 ~top panel! and scattering amplitude ratioa2 /s1 ~bot-

tom panel! for 8CB1aerosil versusd l 5( l o2 l c); data taken from
paper I. The lower critical length scale below which not even sh
range smectic order survives isl c.80 Å. The solid lines depict the

empirical trendj̄;d l and thea2(DT526 K)/s1
LT;d l 23 trend ex-

pected for random-field scaling. The dashed line in the lower pa
indicates a free fit witha2 /s15C( l o280 Å)y, where the valuey
522.6 was obtained.
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best characterized quantities. ForrS<0.1, the result isD
;rS

0.5. In contrast, forrS.0.1 the result isD;rS
1.3. This

idea oftwo regimes may be consistent with the picture of t
aerosil gel described earlier where, in addition to the rand
silica strands~‘‘pearl-necklace’’ of aerosil beads! providing
the random field dictating the local orientation of the nema
director, there perhaps exists an elastic coupling of th
tenuous strands to the nematic director. This coupling wo
dampen the size of director fluctuations analogous to
effect of a wider nematic temperature range, and this give
physical interpretation to the critical flow with random-fie
strength towards the underlyingXY fixed point. The apparen
increase in therelative effect of the elastic coupling seen b
the stronger scaling of the quenched random disor
strength with silica density may be an indication that t
aerosil gel has become significantly stiffer whenrS.0.1,
suggesting the possibility that a rigidity transition has o
curred in the gel.

In conclusion, a combination of finite-size effects a
two-scale universality concepts has yielded a successful
nection between 8CB1aerosil thermal behavior and x-ra
correlation length behavior. The truncation ofDCp(NA)
peaks, measured byhM anddT* /T* , and the observation o
high-temperature 8CB1aerosil correlation lengths that ar

h

t-

el

FIG. 10. The low-temperature mean smectic correlation len

j̄5(j ij'
2 )1/3 ~top panel! and scattering amplitude ratioa2(DT

526 K)/s1
LT for 8CB1aerosil vsrS ; data taken from paper I. The

solid and dashed lines depict the low- and high-density regim
respectively, with slopes given in Eq.~10!.
9-10
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SMECTIC ORDERING IN LIQUID-. . . . II. . . . PHYSICAL REVIEW E 67, 011709 ~2003!
close to those for pure 8CB are both well explained. T
observed dependence of the integrated areadHNA on rS is
not properly described by finite-size scaling, and the rea
for this failure is clear. Trends indHNA(rS) reflect the
changing shape ofDCp peaks over a wide temperature ran
asrS varies. As described in paper I@12# and in Sec. IV of
the present paper, quenched random disorder plays a d
nant role in changing the effective pseudocritical expone
that describe the smectic behavior in 8CB1aerosils. The
densityrS for 8CB1aerosil samples can be equated to
McMillan ratio RM for pure LCs; see Eq.~2!. Since in pure
LCs a larger McMillan ratio implies a larger nematic susce
tibility, increasingRM corresponds to increasing the smect
nematic coupling. IncreasingrS for LC1aerosils has the op
posite effect, as expected. The linearity of the relations
betweenrS and RM provides support for the view that th
aerosil gel is involved in decoupling the nematic and sme
order parameters. It seems possible that the elasticity of
aerosil gel plays an important part in the theory of gels a
random perturbation acting on theN-SmA transition in liquid
crystals. Theory incorporating such elastic aspects is
progress@15#.

Finally, reasonable scaling was observed of the sme
correlation length and scattering amplitudes with respec
the silica density or mean void size, which were rough
consistent with predictions for random-field-type disord
However, the theoretical predictions for random-field s
tems were for uncorrelated random fields, while the disor
due to the aerosil gel is correlated, over some small len
scale, due to its fractal structure@30#. The effect of algebraic
correlations in the disorder on the random-field scaling p
dictions would be an attractive avenue for theoretical inv
tigation.
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APPENDIX A: RELEVANT NEMATIC –SMECTIC- A
BEHAVIOR IN PURE LIQUID CRYSTALS

1. General description of theN-SmA phase transition

Although there is still some theoretical debate, the b
experimental evidence to date points to 3D-XY as the under-
lying critical behavior for theN-SmA transition over experi-
mentally accessible ranges of reduced temperaturet @31#. For
pure liquid crystals, smectic ordering is strongly influenc
by two types of coupling to nematic order: coupling to t
magnitude of nematic order (S) and to the nematic directo
fluctuations (dn̂).
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2. Smectic coupling to the nematic order parameter

The first type of nematic–smectic coupling is the s
called de Gennes coupling of the formc2S. Such a term
affects the coefficientb of the quartic termbc4 in the mean-
field Landau expansion of the smectic free-energy in ter
of the complex smectic order-parameterc @32#. Since the
nematic elastic constants are proportional to the square oS,
this coupling reflects the effect of the ‘‘softness’’ of the nem
atic order prior to the onset of smectic order. The strength
this coupling depends on the magnitude of the nematic s
ceptibility, xN , and such a coupling can drive theN-SmA
transition fromXY-like (b*0) to TC(b50) to weakly first-
order (b,0) with increasingxN . This is clearly seen as a
trend with the width of the nematic temperature range, or
McMillan ratio RM5TNA /TNI , which directly influencesxN

@23#. As an example, the heat capacity critical exponent v
ies from a50.50 to 0.10 as this ratio varies fromRM

50.994 for a 2-K-wide nematic range to;0.954 for a 15 K
wide nematic range. For LC samples with large nema
ranges,RM'0.898 (45 K wide! to RM'0.660 (189 K wide!,
the experimental exponent isa'aXY520.013@33,34#.

3. Smectic coupling to director fluctuations

Smectic order coupling to the director fluctuations has
form c2dn̂. Thus, in addition to the ‘‘softness’’ of the nem
atic, fluctuations in the director orientation compete with t
establishment of smectic order by exciting anisotropic ela
deformations in the smectic. The theory for such coupling
not yet complete nor are all the implications of this effe
understood, but a self-consistent one-loop model has b
put forward@35#. This type of coupling leads to anisotropy i
the correlation lengths parallel and perpendicular to the n
atic director~a feature not present in a normal 3D-XY sys-
tem! and a very gradual crossover from a broad weakly
isotropic critical correlation regimen uu>n' ~weak coupling
limit ! toward a strongly anisotropicn uu52n' regime~strong-
coupling limit!. The strength of this coupling depends on t
magnitude of the splay elastic constantK11, which should
vary asK11;S2. Note that theXY model has no such spla
component. Thus, a liquid crystal with a small nematic ran
will have a smallK11 at TNA and should lie deep in the
anisotropic crossover regime. Liquid crystals with a lar
nematic range will have a relatively largeK11 at their TNA
and should straddle isotropic and weak-anisotropic regim
The latter is observed experimentally, but strong anisotro
n uu52n' , is not seen for any smectic since the narrow ne
atic range condition also induces the de Gennes coupling
thus crossover to tricritical and even first-order behav
@23#.

APPENDIX B: SCALING BACKGROUND

1. Finite-size scaling

The concept of finite-size effects is a straightforward a
basic idea in the modern theory of phase transitions@36,37#.
Ignoring specific surface interactions, finite-size effects st
from the saturation upon cooling of the growing correlati
9-11
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length in a disordered phase to a finite length scale. In tr
tional finite-size scaling~FSS!, the maximum length is dic-
tated by the ‘‘container’’ size. This effect truncates the tra
sition prematurely and leads to three observable effects
the calorimetric data: a suppressed heat capacity maximu
rounding of the transition in temperature, and a suppres
of the transition enthalpy. In addition, for a transition th
breaks a continuous symmetry, random fields lead to a s
ration in the growth of order. The hypothesis dictating o
approach is that the same analysis can be applied in the
of either type of truncation, provided changes in the criti
behavior due to the disorder are accounted. In the cas
random-fields, we call this analysis random-field scal
~RFS!.

In order to proceed, the power-law behavior of the sm
tic correlation length in the nematic phase needs to be c
sidered. It is common practice to ignore corrections-
scaling terms and use simple pure power laws although
is inconsistent with theory as discussed in Ref.@31#. The
correlation lengths of pure LCs are anisotropic with resp
to the smectic layer normal~i.e., the nematic director fo
smectic-A phases! and are represented by effective critic
exponents that are free parameters@24,31#

j i5j iot2n i, ~B1!

j'5j'ot2n', ~B2!

wherej io andj'o are the bare correlation lengths andn i and
n' are the exponents parallel and perpendicular to the la
normal, respectively.

For smectic liquid crystals, the parallel correlation leng
is always larger than the perpendicular, and so our anal
uses this length scale for the definition of the minimum
duce temperature. Defining the maximum possible corr
tion length asjM , one solves Eq.~B1! for the minimum
reduced temperature aboveT* as tm

15(jM /j io)21/n i. It is
not possible to define a similar minimum reduced tempe
ture below the transition since the critical correlation leng
behavior belowT* is not known. Thus, the equation for th
fractional rounding~truncation! of the transition due to finite
length effects is estimated to be

dT* /T* 5~ utm
1u1utm

2u!'2tm
152~jM /j io!21/n i. ~B3!
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Substitutingtm
1 into Eq.~3! gives the relationship for the hea

capacity maximumhM at theN-SmA transition as

hM5A6~jM /j io!a/n i@11D6~jM /j io!2D1 /n i#1Bc .
~B4!

Because of the importance of corrections-to-scaling for
analysis ofDCp(NA), a log-log plot ofhM2Bc versusjM
would not yield a straight line of slopea/n i . The FSS effect
on theN-SmA transition enthalpy is obvious since it involve
replacing the singularDCp(NA) peak betweentm

1 andtm
2 by

hM and thus decreasing the integral ofDCp(NA) over T.

2. Two-scale universality forTÌT*

Two-scale theory of critical phenomena relates the n
universal coefficient of the heat capacity’s leading singula
to the non-universal bare correlation volume@34,38#, and it
also yields the hyperscaling relation between the critical
ponentsa andn. For liquid crystals, there is an anisotrop
version of hyperscaling@39#

22a5n i12n' , ~B5!

which is empirically supported by the somewhat scatte
available data on pure LCs like 8CB@23#. If such hyperscal-
ing holds, then a two-scale relation can be written as

aA1~j ioj'o
2 !5kB~Rj

1!3513.8~Rj
1!3, ~B6!

wherekB is the Boltzmann constant and the value 13.8 p
tains when the correlation lengths are in units of Å andA1 is
in units of J K21 g21. The quantityRj

1 has a different uni-
versal value for each universality class. For the 3D-XY
model, the value of 13.8(Rj

1)3 is 0.647@34# and several pure
LCs have been shown to haveaA1(j ioj'o

2 ) values close to
this @31#; the value for 8CB is 0.651@4,24#. Assuming that
hyperscaling andXY-like pure LC values ofRj

1 hold for
8CB1sil samples independent ofrS , then

aA1~j ioj'o
2 !.0.647. ~B7!

Thus, heat capacity critical behavior (a andA1 values! for
LC1aerosils will allow the determination ofn i12n' and
(j ioj'o

2 ).
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